Phosphoinositide 3-kinase controls early and late events in mammalian cell division

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphoinositide 3-kinase controls early and late events in mammalian cell division.

Phosphoinositide 3-kinase (PI3K) plays a crucial role in triggering cell division. To initiate this process, PI3K induces two distinct routes, of which one promotes cell growth and the other regulates cyclin-dependent kinases. Fine-tuned PI3K regulation is also required for later cell cycle phases. Here, we review the multiple points at which PI3K controls cell division and discuss its impact o...

متن کامل

Phosphoinositide 3-kinase and Forkhead, a switch for cell division.

Cell cycle progression is a tightly controlled process. To initiate cell division, mitogens trigger a number of early signals that promote the G(0)-G(1) transition by inducing cell growth and the activation of G(1) cyclins. Activation of cyclin E/cdk2 (cyclin-dependent kinase 2) at the end of G(1) is then required to trigger DNA synthesis (S phase entry). Among the early signals induced by mito...

متن کامل

Phosphoinositide 3-kinase-dependent antagonism in mammalian olfactory receptor neurons.

Phosphoinositide signaling, in particular, phosphoinositide 3-kinase (PI3K) signaling, has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand this phenomenon we investigated PI3K-dependent inhibition between single odorant pairs. The concentration-dependent inhibition of the response of native rat ORNs to octanol by citral ...

متن کامل

Phosphoinositide 3-kinase signalling events controlling axonal morphogenesis.

The establishment of neuronal morphology is essential for the formation of the nervous system. In general, neurons undergo a developmental programme during which their immature processes are specified into one axon and several dendrites. Extension of axons and dendrites is then critical for the establishment of appropriate connectivity. A body of work implicates the PI3K (phosphoinositide 3-kin...

متن کامل

Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The EMBO Journal

سال: 2006

ISSN: 0261-4189,1460-2075

DOI: 10.1038/sj.emboj.7600967